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ABSTRACT

A new field of multi-particle interferometry is
introduced using a nonlinear optical spontaneous
(SPDC) of a photon

The study of SPDC
in a multi-mode

shows that at least low conversion rate limit is

parametric down conversion

into more than two photons.
using a realistic Hamiltonian
possible. The down converted field exhibits many
stronger nonclassical phenomena than the usual
two photon parametric down conversion.
Application of the multi-particle interferometry
Bell's

is

to a recently proposed many particle

theorem on Einstein-Podolsky-Rosen problem

given.

INTRODUCTION

down

known to be
correlated photon

A two photon parametric

(sppc)l
source

spontaneous

conversion has been
effective of highly
pairs that exhibit many interesting nonclassical

an

squeezed states,
of classical
which starts with a

properties, such asg

antibunching, violation
inequalities, etc. Our study,

realistic Hamiltonian not only shows that the
divergence problenz'a, which occured in the usual
parametric approximation, does not occur when the
pump is quantized, but also shows that the phase
matching problem, in principle, doesn’t prohibit
the phenomena to occur.

It is possible4 to have the phenomenon at least
in the low conversion rate limit. Since we know
that quantum interferometers do not require a
high coversion rate (indeed we like to have only
one set of photons in the entire setup at any
time),

optical interferometry in which one measures the

we can introduce a multi-particle quantum

quantum correlation properties among more than
two particles. One can construct three-photon
coherent state interferometers in the form of a

generalized wmomentum-position interferometry, a
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generalized form of a Franson-type position-time
and a deneralized polarization
look their

interferometry,

correlation experiments, and for

nonclassical behaviors.
I. GENERALIZED PARAMETRIC DOWN CONVERSION

Starting with an interaction Hamiltonian for

three photon SPDC in the parametric approximation

which allows multiple mode down conversion from
the pump with wavevector ko and frequency w,:

Hy = fdv XY K {alazaao‘i'\ k'r+iwgt

. Al’az'ﬂafeiA k'r-iWgt, (1)

we obtain the expressions for the time

+
development of the operators A, A

. . L oxy t, to-iwgt
B, = -lay By, -i LXK 8, 8; e o

*O(kp-k-Ky-kp) (2a)
. + LYY iwgt
8y, - 1o 8 ), +i X 2K 88,0 "0

*8(kg-k-k;-k3) (2b)
A wmajor difference between Eqs.(2) and the
equivalent two photon case is that in this case
the 8 function at the end of Egs.(2) cannot
eliminate the sumsations (or integrals, for a

continuum) over k,, kz unless we have a special

selection mechanism such as ideal phase matching,

or photon resonances, for the specific down
converted frequencies.

But in any case,
solved and yield the same type of curves for the
photon although phase
matched cases, we have much

for the 3 photon degenerate case we

the equations can be

number, in non-ideal

smaller values. For
example,
have

o 2 2

N = 18K“° (3N“+3N+2) (3)

Except for the two photon case, which has a well

, etc.

known analytic solution N = sinh?Kt that diverges
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it can be shown that in all higher
order cases the photon number diverges at a

finite time. On the other hand, if we gquantize
the pump field, the interaction Hamiltonian HIQ

at infinity,

becomes

Mg = fdv EXYY xq{alazaauo’e'“\"“

(4)

where KQ is a quantus pump equivalent to K in

+ .lflz’laoﬂoeiAk.r} R

parametric approximsation.

From this we have a time development of
the down converted photon number for the three
photon degenerate SPDC:

N = IBK:((3N293N+2)No(t)-N345N02)}. (5)

where Ng(t) gives the expression for the depleted

pump beam and is related to the down converted
beam as <N0(t)>=<No(O)>—<N(t)). The extra term
with a negative sign in Bq.(5) will slow down the
change of the slope of the curve when the pump
depletion becowes significant. Notice that the

expression in the guantum pump reduces to the
parametric approximation for No(t)>>N. The photon

number will eventually oscillate dreatly for

large Kt. This is true even in the case when we

don’t have an ideal phase matching.

11. MULTIPARTICLE INTERFEROMETRY

Two fundamental relations for a wmulti-photon

spontaneous parametric down conversion, i.e.
(6)

(7)
along with the facts that the pump beam with ko

ko = klka& e okn,

W = Wyt Ut W,

and w, is a coherent one and that the n-photon

down converted state is represented by the
product of the individual photon states, tell us
that individual
doesn't have a definite phase,

information.

down converted photon
while the total

This n-

each

system carries the phase
photon correlation property opens a new field of
multi-photon interferometry in which one measures
the joint detection probability of n photons.

Our scheme for multi-photon interferometry

starts with forming a quantum wmechanically
entangled state.
1¥> - 2_112 {hrgegt e ¢

‘1(¢14¢2}' '{¢n) '_1_2-.0_n> }‘ (8)
where |+i> and F1> refer to the two different
possible states of photon i and ‘Pi represents

the phase difference between those two atates. It
is a matter of indifference whether |¢1> and |-i>

states are switched for any particle(s) i.

Now if our measurement M on the system
involves off-diagonal matrix elements, i.e., a
mixing of the two possible states, then the
quantus mechanical expectation value <¥] M |¥>
for the measurement will generally contain terms

that oscillate sinusoidally with ¢10¢20"’+Qn.

These off diagonal elements or the mixing of the
states may be achieved by making use of beam
splitters or a polarization analyzer whose axis
lies in between the two orthogonal polarization
axes. We sBtay with three particle systeas
because we would have an extremely small chance
of getting a right set of correlated photons in
higher order.

(1) Horne-Shimony-Zeilinger
interferometer: This two-photon momentum-
position interferometer was implemented by Rarity

Generalized 5

and Tabster®, Recently, a three-particle version
of the experiment was proposed by Creenberger
et.al’ to test against a family of local realism.
Their gedanken three particle setup can be
realized through the three photon SPDC which we
described in the previous section. One would have
an expectation value for the three photon joint

detection that oscillates sinusoidally with
P, +D,y+ Py,
(2) Generalized Franson Interferometer:
Y AX1
D1 —

MS3

/X2

Fig.1 Three arm Franson interferometer
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rranson8 devised a two particle gedanken
interferometor that uses the interference between
two possible states each of which belongs to a
different emission time.

9 and

The experiment was implemented by Ou et al.
by Kwiat et al.10 A generalized three-photon
Franson interferometry may use the Ou et al.-type

of setup with three Michelson interferometers as

in Pig.1l. The same analysis should go through as
in the two photon case and the expectation value
for the coincidence counting rate of three

photons will exhibit a sinusoidal oscillation
that depends upon the accumulated optical path
differences between two possible paths.

3) Polarization Interferometer: Finally,

construct a third type of entangled state formed

wve

by two orthogonal polarizations of photons for a
three photon polarization interferometer. Suppose
all three down converted photons are x-polarized.
(one can in principle enforce this by placing x-
filters after the apertures) In one set of paths
(primed ones) we place half wave plates and in

the other set of paths (unprimed ones) we place
compensators and the variable phase shifters qbi.

Then we combine the beams on the beam splitters
so that the polarization states may be mixed
before they are registered by two channel linear
polarization analyzers. If we count a detection
of an x-polarized photon as +1 and a y-polarized
photon as -1, using two channel analyzers, then

we would have a three-photon joint detection
probability: 11

B(¢1,¢2,¢3) = 113 cos(‘blfd)zod)a). (9)

AND MORE

III. BELL'S THEOREM

In general, the many particle correlated system
we discussed here is not a mere generalization of
It exhibits much
stronger nonclasgsical effects than the usual two
particle correlated system through its additional

of stronger
squeezing3 and a more promsinent &ltibunchinglz.
We of
generalized inequality

two particle correlated system.

degree freedom. Some found a

classical
by a

atronger violation

Cauchy-Schwartz

found a
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factor of (n-1)/n in a simple higher order system
which can be easily generalized to other systeas.
We also found that in a Pranson-type time-energy

interferometer classical stochastic
electrodynamics fails rapidly to reproduce
quantum mechanical result in visibility by a

factor of 1/2 for each additional order.

Pinally, we saw the dramatic breakdown
of local realism in many particle system due to
Greenberger et.al (GHZ)7. It has shown that any
local theories that is based on EPR type realism

faces contradiction as it tries to immitate
quantus wechanical results in a wmsany particle
correlated gystem. This theorem can be

implemented by multiphoton interferometries which
we discribed in Section II. 13
shown that the violation of Bell type inequality
in a many particle system increases

Mermin also has

This
is just an another example of a strong violation

exponentially as it goes to a higher order.

of classical limita by a many particle system
through its additional guantum degree of freedom.
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